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An expression has been derived to describe both saturated and unsaturated permeability 
of porous media in terms of the pore size distribution as obtained from mercury-injection 
data or water-desorption isotherms. An interaction model has been adopted wherein 
both pore radius and effective area available for flow have been considered. The per- 
meability values obtained using this expression have been compared with water and gas 
permeabilities of a variety of porous media. Satisfactory agreement is found between 
experimental and calculated values over a wide range of permeability. 

The flow of fluids through porous materials is of great significance in the fields 
of industrial chemistry, oil technology and agriculture. In general, it may be 
stated that the principal interest is in the transport through reactive materials. 
However, interpretation of transport data is complicated by the fact that at the 
present time no entirely adequate description of flow through inert granular 
materials exists. Two main types of approach are at present being used in this 
problem ; the first results in the Kozeny-Carman equation 1 which is derived using 
the hydraulic radius and tortuosity concepts. It has been assumed that tortuosity 
may be obtained from electrical resistivity measurements. This approach has 
been discussed by Wyllie and Spangler 2 and Faris et al.3 The other treatment of 
this problem is a statistical one developed by Childs and Collis-George 4 and is 
based on the probability of the continuity of pores in adjacent places within the 
poious medium. Both these approaches to the problem depend on the pore 
size distribution of the medium but that of Childs and Collis-George is related 
only to the pore size distribution, and requires no additional data such as the 
electrical resistivity of the porous medium filled with a conducting fluid. More 
recently, Marshall 5 has developed an equation which is essentially similar to that 
of Childs and Collis-George. 

Recently, Fatt 6 has put forward flow concepts wherein the porous medium is 
likened to a network of capillaries. In this treatment, and the electrical analogue 
of Probine,7 the assumed nature of the porous solid is somewhat similar to that 
used here. 

The theory presented here is a further development of the pore interaction 
model proposed by Childs and Collis-George.4 The equations presented closely 
describe saturated and unsaturated permeability as a function of bed porosity, 
fluid content and pore size distribution. 

THEORY 

In a porous solid there is point-to-point variation in the volume, area and 
linear proportions of solid to non-solid. A porous material is envisaged as con- 
sisting of solid spheres which interpenetrate each other, separated by spherical 
pores which also interpenetrate; the solid and pore systems are therefore sym- 
metrical. By using this model, it is possible to arrive at a generalized relationship 
between the porosity and the cross-sectional area controlling flow in a porous 
material. When the porosity of an isotropic porous medium is given by ~ r n l  
per ml of bed, then the area of pore space exposed in a cut surface of appreciable 
extent will be E cm2 per cm2. If an interaction model is adopted to include the 
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probability of continuity of pore space within the medium, the pore area resulting 
from interaction will be between E and ~2 cm2 per c m 2  since part of E itself is the 
resultant of pore interaction. 

If the area resulting from interaction is E*, that is, the resultant of ex inter- 
acting with cX to give an efective area for flow, then 

and since 
E X  > & > E 2 x  > E2,  

~ < 1 ,  0*5<x<1. 

Further, cX may be regarded as a maximum area and c* a minimum pore area. 
cm2 per cm2 were contained in a single plane it would be associated with a 

maximum area which could be occupied by solid, which by a symmetrical applica- 
tion of the above procedure, would be given by (1 - E ) ~  cm2 per c m 2 .  Hence, the 
minimum pore area in the absence of interaction is given by 1 - (1 -E)X cm2. Both 
the minimum pore area obtained in this way and the minimum area obtained 
after interaction should be identical and both limit flow so that 

&2x+( l  - E y -  1 = 0. 
For values of E between 0.1 and 0.6, x lies between 0.6 and 0.7 and for simplicity 

x may be taken as 3. 
When a hydrostatic suction or tension of sufficient magnitude is applied to 

the water contained in a porous medium, water will be withdrawn from the pore 
space. For a given material there will be a characteristic relationship between 
water content and applied suction (moisture characteristic 4). The moisture 
characteristic may be obtained by placing the saturated porous medium on a suit- 
able glass sinter which communicates with a free water surface by means of a 
hanging water column. By lowering the free water surface the distance between 
the sinter and the free water surface (i.e. the suction) increases. Beyond a critical 
value of the applied suction each increment of the suction leads to a decrease of 
the water content of the porous material. In the present paper, the pore volume 
is divided into a number of classes, each having the same volume.5 The suction 
corresponding to the mid-point in each volume class is substituted into the capillary- 
rise equation to obtain the pore radius for that class. In a similar way, mercury- 
injection data and liquid-nitrogen desorption isotherms are used to define the 
volume-radius characteristics of porous materials. 

Assume there are rn classes of pores in the porous medium and that each class 
occupies the same proportion of the total porosity.5 The interacting areas of 
these classes in section are denoted by al, a2, a;, . . ., and the radii characterizing 
these pore classes are rl>rz>r3 . . . . Flow will be determined by pore inter- 
actions and, for Poiseuille flow, both area and radius interactions will contribute. 
The resistance to flow in a pore sequence is determined by the square of the smaller 
pore radius of each interaction. Thus the permeability is given by 

K = 1 .  
8 

but since 

then 
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‘a la l r i  ala2r$ a la& a,a,r: . . . a,a,r; 

a 2 a l r i  a2a2r; a2a3ri a2a& . . . a2amri  

a3alr5 a3a2r$ a3a3r: a3a& . . . a3amri 

a ,a lr i  ama2ri a,a,r: a,a,r: . . . amamr,2n 

a l  = a2  . . . a ,  = d in t ,  

K = icfm-2(r: +3ri  + 5r: . . . +(2m - 1)r;). 
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For the computation of unsaturated permeability the value of E taken is 
that of the liquid-filled pore space and the r2 series is commenced at the appropriate 
pore class, that is the largest pore containing liquid. 

Rather than introduce discontinuities into the pore-size distribution, it is pre- 
ferable to use the true continuous variation in pore size with variation in volume 
porosity. 

Thus, when 
~ ( r )  = volume of pores per unit volume with radius < r ;  

E(R) = E = porosity, R is maximum pore radius; 
q(r) = E - E ( ~ )  = area of pores per unit cross-section with radius >r ,  

the permeability is given by 

and integrating by parts 

e2 

0 
= 4J r2d(q)2;  

if the distribution is discontinuous, this is to be interpreted as a Stieltjes integral. 
If the Poiseuille coefficient is included, then 

and E:/$ may be regarded as a normalizing function. For saturated flow this is 
similar to Childs and Collis-George 4 except that  ME^ is replaced by 1/8d. 

The saturated permeability can be obtained by plotting (E-E$ against r2 
where r is the radius equivalent to the applied suction when the liquid-filled 
porosity is E,. The area under this curve is substituted in the following equation 
to obtain the permeability : 

a1 ternativel y, 

Applicability of this method for obtaining steady-state permeability depends 
on factors, such as isotropy of the total pore space distribution in the medium, 
meanirlgful pore-size distribution data, and random distribution of the pore-size 
classes. The method will not give satisfactory results if the medium has been 
compressed to produce a laminated effect. The material must be inert in terms of 
swelling and shrinkage response to the liquid used in obtaining pore-size dis- 
tribution data and permeability measurements. Further, special consideration 
should be given to contact angle between liquid and the porous medium.8 Com- 
pletely random dispersion of the pore-size classes is assumed in the above derivation 
and where aggregation of pores of similar size occurs, this restriction of pore 
continuity will affect the coefficients of the r2 series in 1. Clustering of pores of 
similar radii is probably the most important factor leading to deviations between 
expected and actual permeabilities of inert porous media. 
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UNCONSOLIDATED MEDIA 

Childs and Collis-George 4 presented data for three unconsolidated materials 
and a comparison of computed and experimentally determined permeabilities is 
shown in fig. la, l b  and lc. Similar data of Youngs 4 are shown in fig. Id and le. 
'The computed curves for permeability in relation to water content obtained by the 
method of Childs and Collis-George, and Marshall, are shown for comparison. 

permeability, c m 2  x 10-8 
FIG. 1.-The relation between permeability and water content. - - - - theor. ; 4 ~  5 

- present theory; . . . . . expt. a, b and c ;  4 d and e.9 

In this latter method of computation, the " matching factor " used by Childs and 
Collis-George has been discarded and the pore radius together with the Poiseuille 
coefficient 1/8 are used ; the pore radius replaces the reciprocal of capillary suction. 
It is clear that with these types of media the present method provides a satisfactory 
interpretation of the saturated and unsaturated liquid permeability in terms of 
porosity, liquid-filled porosity and pore size distribution and is a marked improve- 
ment on previous methods of computation. 



1 204 P E R M E A B I L I T Y  O F  P O R O U S  S O L I D S  

This conclusion is reinforced when experimental results obtained by 
Carman lo* 11 are considered. The results he obtained 10 for the pore-volume 
distribution of a Linde silica plug have been used to estimate the permeability of 
the plug. As with the other calculations, the pore radius-volume curve was 
divided into ten equal volume classes and the radius at the mid-point of each class 
was obtained. If the monolayer is assumed to be immobile it is necessary to 
subtract the monolayer thickness of 6 A from the radii for each pore class ; in 
addtion, the value substituted for the porosity in eqn. (1) is E = 0.402 and this 
is obtained by subtracting the volume occupied by the monolayer from the total 
void volume ( E  = 0306). When the intrinsic permeability for the Linde silica 
plug is calculated in this way, a value of 3 x 10-15 cm2 is obtained and this compares 
with the permeability of 3 . 1  x 10-15 obtained for a similar plug11 The experi- 
mental values for saturated permeability obtained by Childs and Collis-George,4 
Youngs,g and mute and Wilkinson,l2 are presented in fig. 2c. From this figure 
and the results obtained with the Linde silica plug it can be seen that the proposed 
method of computation satisfactorily describes the Permeability of unconsolidated 
porous media over the range 3 . 1  x 10-15 to 1 - 5  x 10-6 cm2. 

RELATIVE PERMEABILITY 

Several workers have shown similarity between relative permeabilities of a 
number of materials. All the materials showing almost identical courses of 
relative permeability are characterized by very narrow pore size distributions and 
may be regarded as consisting of a single pore-size class only. 

Thus, 
Ksat = iE%n-2m2r2, 

Kunsat = iEim-2n2r2, 
where E,, is the liquid-filled pore space, n is the number of liquid-filled pore classes 
and rn is the total number of pore classes : 

and 

E, = m / m .  
Thus, 

A comparison of data given by Carman 11 with those obtained by this method 
of computation is given in table 1. The agreement between the actual and com- 
puted relative permeabilities is most satisfactory, and discrepancies can be at- 
tributed to variations in total porosity and deviations from the assumed single- 
pore radius class. For a medium having a Gaussian pore-size distribution, (3) 
would lead to underestimates of relative permeability at high degrees of saturation 
and overestimates at low degrees of saturation. 

TABLE 1 .-RELATIVE PERMEABILITY 

Childs and compu ted-3 
E = 0-40 E = 0.50 

% saturation Carman Leverett Collis-George mean 

100 
90 
80 
70 
60 
50 
40 
30 

1.00 
0 66 
0.44 
0-27 
0-16 
0.087 
0.040 
0.022 

1.00 
0.70 
0.47 
0.29 
0.16 
0.09 
0.04 
0.02 

1-00 
076 
0.56 
0-35 
0.2 1 
0.1 1 
0.04 
(0) 

1.00 
078 
0.53 
0.30 
0.17 
0.082 
0.042 
0.014 

1-00 
0725 
0.500 
0.302 
0.175 
0.092 
0*041 
0.014 

1.OOO 
0.716 
0483 
0-310 
0.1 85 
0.101 
0.048 5 
0.0183 

1.OOO 
0.700 
0-475 
0.305 
0.1 82 
0.092 
0.042 
0.01 8 
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CONSOLIDATED MEDIA 

Eqn. (1) can be regarded as describing the saturated and unsaturated per- 
meability of unconsolidated media and in this sense these media can be regarded 
as ideal systems. It is necessary to consider the characteristics of consolidated 
media which would cause deviations from ideal behaviour. In oil reservoir 
technology, flow problems relate to " consolidated " porous solids which are, in 
general, sedimentary deposits, such as sand- 
stones and limestones. These materials when 
first deposited were probably laminated but 
showed reasonable isotropy within the larger 
laminae. On a particle-size basis, it would 
be expected that the parent deposits of sand- 
stones would have a lower initial porosity than 
the more finely divided calcareous materials. 

For some materials, Wyllie and Spangler 2 
have shown that in the size of samples com- 
monly used in their various measurements of 
formation factor and permeability there is not, 
in fact, pronounced anisotropy. The forma- 
tion factor is defined as the ratio of resistance 
of the medium saturated with a conducting 
fluid to the resistance of the fluid. On their 
evidence it could be assumed that if con- 
solidation has been accompanied by downward 
compression of the beds, in most instances 
this compression has not resulted in appreci- 
able anisotropy. Cementation of the parent- 
materials, either by deposition of finely divided 
matter or by precipitation of soluble sub- 
stances within the porous matrix, would seem 
to be the more significant process in reducing 
the parent-bed porosity to that of the con- 
solidated bed. 

There are a number of reasons, to be dis- 
cussed subsequently, which would suggest 
that the present theory would be of limited 
value for computing permeability of consoli- 
dated media. Nevertheless, the permeability 
values of various workers 3 . 1 3 ~ 1 4  plotted in 
fig. 2a and fig. 26 indicate that the agreement 
is good. Both positive and negative devia- 
tions from the expected permeability are en- 
countered but there is a tendency for the com- 
puted values to over-estimate. These deviations 
are not related to the porosity of the medium. 
In fig. Zc, the data for unconsolidated media 
are collected and permeabilities of a few con- 
solidated media (K> 1 x 10-8 cm2) are included 
for comparison. The data in fig. 2 drawn from 

actual permeability, cm?-x 10-8 

FIG. 2.-Comparison of computed 
and measured permeability. 

V Burdine et al. ; I3  x Childs and 
Collis-George; 4 0 Faris et al. ; 3 
0 Klute and Wilkinson; 12 v Pur- 

cell ; 14 0 Youngs 9 

Faris et al.3 have been corrected for Knudsen flow but the other gas-permeability 
data have not been corrected. In all the calculations of the permeability of 
of consolidated media reported here, the pore radius has been based on the pore- 
size distribution as determined by the mercury-injection method. This method 
appears to be the most satisfactory one since Joyner et aZ.15 have obtained close 
agreement between pore-size distribution derived from liquid-nitrogen desorption 
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isotherms and mercury-injection data. Purcell 14 has presented both mercury- 
injection data and results for water desorption in a centrifugal field. Using the 
water-desorption results, Marshall has obtained good agreement between calculated 
and experimentally determined gas permeability. However, the centrifuge method 
is probably the least satisfactory one for obtaining pore-size distribution data. 

When the present method was used to calculate the permeability of Bradford 
sandstone ( E  = 0-148), the computed value 7.8~ 10-11 cm2 is much larger than 
the experimental value 2 of 2.8 x 10-11 cm2. This and other discrepancies probably 
arise from the nature of the cementation process. 

With cemented (consolidated) materials the process of cementation may 
occur in a number of ways, some of which are given below : 

(i) selective and complete occupation of fine pore classes ; 
(ii) selective and complete occupation of coarse pore classes ; 
(iii) selective and complete occupation of a number of pore classes of any size ; 
(iv) random occupation of pores, that is, incomplete occupation of a number 

of pore size classes ; 
(v) uniform, but not complete, occupation of the pores of all pore classes, 

that is, the same volume proportion of individual pores has been filled 
with cementing material. 

If, for simplicity, we assume that the initial bed was made up of pores of almost 
equal radii, then for materids cemented by methods (i) to (iv), it would be ap- 
propriate to compute permeability thus : 

K = $$rno2rn:r& (4) 
where E is the initial porosity and is proportional to rng ; rg is the pore radius of 
the unconsolidated bed, E, is the porosity of the consolidated bed and is pro- 
portional to m, and rc is the pore radius of the consolidated bed. 

Since in the initial condition the beds may be assumed to have had a porosity 
of about 0.40 ml/ml compared with approximately 0.20 ml/ml in the cemented 
condition, the above method would give values about those obtained by the 
method used to calculate the permeability values given in fig. 2a and 26. 

If rg = rc, this method of calculation gives 

From this it might be inferred that cementation has occurred predominantly by 
method ( 5 )  and that the proportional decrease in porosity is accompanied by the 
same proportional decrease in radius, i.e., 

DISCUSSION 

In " ideal " porous media, that is, in the absence of anisotropy, cementation 
or incomplete dispersion of pore sizes, the present model affords a method of 
computing with considerable accuracy both saturated and unsaturated permeability. 
Clearly in media where any of the above conditions, anisotropy, etc. do occur, 
both probability of continuity of the total pore area in section and the nature of 
the pore-radius interactions cannot be ascertained from measurements of porosity 
and pore-size distribution alone. 

In such cases, measurement of the formation factor will provide the informa- 
tion expressing total pore area continuity. This same information is that required 
also in defining diffusive flow through porous solids as suggested by Millington,l6 
so that for saturated unconsolidated systems, 
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However, the nature of the pore radius interactions will not be evident from 
measurements of formation factor and hence the value of the r2 term for Poiseuille 
flow in these non-ideal systems. Faris et al.3 have obtained good agreement 
between measured gas permeability and the permeability computed from the 
formation factor and a pore radius term which emphasizes the significance of 
small pores and in this respect resembles the t 2  series used here. Various methods 
have been used to obtain a “mean” radius of porous solids, but unless these 
methods take into account the probability of interaction of pores of differing 
radii, they must always remain of limited applicability for both Knudsen flow 
and Poiseuille permeability. 

The authors wish to thank Dr. S .  R. Faris for kindly providing unpublished 
mercury-injection data and Mr. G. Szekeres and Mr. G. N. Wilkinson for mathem- 
atical advice. 
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